Transformation of Consumer Experience in Retail Through Predictive Analytics and Smart Technologies

Authors

  • Rafael Da Silva G Retail Predictive Analytics Specialist, France. Author

Keywords:

Predictive analytics, smart retail technologies, consumer experience, artificial intelligence, digital transformation, IoT, retail innovation

Abstract

The retail sector is undergoing rapid digital transformation through the integration of predictive analytics and smart technologies aimed at enhancing consumer experience. This paper explores how data-driven systems, artificial intelligence (AI), and Internet of Things (IoT) technologies are being leveraged to personalize customer journeys, optimize inventory management, and improve operational efficiency. A synthesis of existing literature and industry practices is presented, supported by illustrative models and empirical tables. The study highlights the potential of intelligent retail systems to revolutionize consumer engagement, while also addressing the challenges and ethical concerns associated with data usage.

References

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188.

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance. International Journal of Production Economics, 182, 98-112.

Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age. W. W. Norton & Company.

Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2020). Adoption of AI-integrated CRM systems in retail. Journal of Retailing and Consumer Services, 57, 102230.

Pantano, E., & Timmermans, H. (2014). What is smart for retailing? International Journal of Retail & Distribution Management, 42(5), 364-372.

Grewal, D., Roggeveen, A. L., & Nordfält, J. (2020). The future of retailing. Journal of Retailing, 96(1), 86-95.

Nguyen, T. H., Ngo, L. V., & Ruël, H. (2021). Retailing and IoT: A systematic literature review. Technological Forecasting and Social Change, 164, 120509.

Ghosh, S. (2019). The role of AI in omnichannel customer experience. Journal of Business Research, 100, 322–331.

McKinsey Global Institute. (2018). Notes from the AI Frontier: Applications and value of deep learning.

Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing. Journal of Retailing and Consumer Services, 34, 289–296.

Mangalasserri, K. K., Ramachandran, K., Singh, N., Kumar, M. J., Reddy, M. S., & Kumar, P. (2025). International Journal of Electronic Customer Relationship Management, 15(3), 222-247.

Ramachandran, K. K., Mishra, B. S., Oberai, H., Masood, G., Anand, I. M., & Shukla, N. (2025). International Journal of Intelligent Enterprise, 12(2), 126-147.

Singh, A., Ramachandran, K. K., Krishna, S. H., et al. (2024). A novel and secured bitcoin method for identification of counterfeit goods in logistics supply management within online shopping. International Journal of Information Technology, 16, 5371–5377.

Ramachandran, K. (2024). The Role of Artificial Intelligence in Enhancing Financial Data Security, 3, 1-11.

Ramachandran, K., Stanleydhinakar, M., Navaneethan, M., et al. (2024). Photoelectrochemical water oxidation of surface functionalized Zr-doped α-Fe2O3 photoanode. Journal of Materials Science: Materials in Electronics, 35, 687.

Ramachandran, K. K., Mishra, B. S., Oberai, H., Masood, G., Anand, I. M., & Shukla, N. (2025). International Journal of Intelligent Enterprise, 12(2), 126-147.

Tanwar, S., Balavenu, R., H. H., Ramesha, Tiwari, M., Ramachandran, K. K., & Kumar, D. (2023). Applied Cryptography in Banking and Financial Services for Data Protection. CRC Press, 10.1201/9781003405580-10.

Hasbullah, N. N., Kiflee, A. K. R., Arham, A. F., Anwar, S., & Ramachandran, K. K. (2025). Leveraging Mobile Distribution Platforms to Drive E-Waste Recycling Satisfaction of Gen Z in Malaysia. Marketing and Management of Innovations, 23(6), 1-11.

Ramachandran, K. K., Karthick, K. K., Bala, N. K., Tiwari, M., Raju, G., & Ganesh, K. (2024). Improving Retail Industry Inventory Management Using Machine Learning. CRC Press, 10.1201/9781003490890-28.

Ramachandran, K. (2024). Population Health Management Through Predictive Analytics, 1, 1-9.

Ramachandran, K., Takhar, S., Jha, M. K., Patel, J. D., Randhawa, N., & Lourens, M. (2024). Revolutionising Industries and Empowering Human Potential with Artificial Intelligence Tools and Applications. Proceedings of the 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, Pune, India, 1-6.

Singh, S. K., Ramachandran, K. K., Gangadharan, S., Patel, J. D., Dabral, A. P., & Chakravarthi, M. K. (2024). Examining the Integration of Artificial Intelligence and Marketing Management to Transform Consumer Engagement. Proceedings of the 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, Pune, India, 1-5.

Ramachandran, K. K. (2024). Exploring Case Studies and Best Practices for AI Integration in Workplace Adoption. 1, 1-10.

Hasbullah, N. N., Kiflee, A. K. R., Anwar, S., & Ramachandran, K. K. (2024). Mapping the trend of digital transformation in omnichannel retailing: A bibliometric analysis. Marketing and Management of Innovations, 15(1), 29–40.

Awadh, M. A., Karthick, K. K., & Ramachandran, K. K. (2024). Cognitive Computing in E-Commerce Enhancing Supply Chain Management. Proceedings of the 7th International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 1643-1648.

Downloads

Published

2025-12-04

How to Cite

Transformation of Consumer Experience in Retail Through Predictive Analytics and Smart Technologies. (2025). GLOBAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND DEVELOPMENT, 6(6), 13–19. https://gjmrd.com/index.php/GJMRD/article/view/GJMRD.6.6.003